# **Fundamentals of Trigonometry**

Trigonometry is the branch of mathematics that is concerned with the relationships between the sides and the angles of triangles.

An angle is an angular unit of measure with a vertex (the point at which the sides of an angle intersect) at the center of a circle, and with sides that subtend (cut off) part of the circumference.

If the subtended arc is equal to one-fourth of the total circumference, the angular unit is a *right angle. If the arc equals half the circumference, the unit is a straight angle (an angle of 180°). If the* arc equals 1/360 of the circumference, the angular unit is one *degree*.

Acute angle:  $0^{\circ} < \theta < 90^{\circ}$ Obtuse angle:  $90^{\circ} < \theta < 180^{\circ}$ 



Straight angle (180°)

Each degree is subdivided into 60 equal parts called minutes, and each minute is subdivided into 60 equal parts called seconds. The symbol for degree is °; for minutes ', and for seconds ''. In trigonometry, it is customary to denote angles with the Greek letters  $\theta$  (theta) or  $\phi$  (phi).

Another unit of angular measure is the *radian*.

The radian is a circular angle subtended by an arc equal in length to the radius of the circle whose radius is r units in length. The circumference of a circle is  $2\pi r$  units; therefore, there are  $2\pi$  radians in 360°. Also,  $\pi$  radians corresponds to 180°.



### **Trigonometric Functions**

A Adjacent C

Mnemonics

SOH-CAH-TOA

Sine = Opposite ÷ Hypotenuse Cosine = Adjacent ÷ Hypotenuse Tangent = Opposite ÷ Adjacent

"Some Old Horses Chew Apples Happily Throughout Old Age"

Sine of Angle A = sinA = 
$$\frac{a}{c}$$
 =  $\frac{Opposite}{Hypotenuse}$   
Cosine of Angle A = cos A =  $\frac{b}{c}$  =  $\frac{Adjacent}{Hypotenuse}$   
Tangent of Angle A = tanA =  $\frac{a}{b}$  =  $\frac{Opposite}{Adjacent}$   
Cotangent of Angle A = cotA =  $\frac{b}{a}$  =  $\frac{1}{tanA}$   
Secant of Angle A = secA =  $\frac{c}{b}$  =  $\frac{1}{cosA}$   
Cosecant of Angle A = cscA =  $\frac{c}{a}$  =  $\frac{1}{sinA}$ 

 $\tan A = \frac{\sin A}{\cos A}$ 

### Trigonometric Functions of an Any Angle

Quadrant: any of the four areas into which a plane is divided by the reference set of axes in a Cartesian (x,y) coordinate system

To generate an angle in the 1st quadrant:

- 1. Take a line OP<sub>0</sub> which lies along the positive x-axis.
- 2. Rotate it counterclockwise about its origin 0 onto ray OP to form a positive angle  $\theta_1$ . This angle is greater than 0 but less than 90°.

Denoting the distance OP as r we obtain:

$$\sin \theta_1 = \frac{y}{r} \qquad \qquad \cot \theta_1 = \frac{x}{y}$$
$$\cos \theta_1 = \frac{x}{r} \qquad \qquad \sec \theta_1 = \frac{r}{x}$$
$$\tan \theta_1 = \frac{y}{x} \qquad \qquad \csc \theta_1 = \frac{r}{y}$$

For quadrant I, both x and y are positive.



Figure 4.3. Quadrants in Cartesian Coordinates



Definition of trigonometric functions of angles in first quadrant

If we look at the 2nd quadrant:

 $90^{\circ} < \theta_2 < 180^{\circ}$ x is negative, y is positive

Using trigonometric reduction formulas, we obtain:



Definition of trigonometric functions of angles in second quadrant.

$$\sin(180^\circ - \theta_2) = \sin\theta_2 = \frac{y}{r}$$

$$\cos(180^\circ - \theta_2) = -\cos\theta_2 = \frac{-x}{r}$$

$$\tan(180^\circ - \theta_2) = -\tan\theta_2 = \frac{y}{-x}$$

$$\cot(180^\circ - \theta_2) = \frac{1}{\tan(180^\circ - \theta_2)} = \frac{1}{-\tan\theta_2} = -\cot\theta_2 = \frac{-x}{y}$$

$$\sec(180^\circ - \theta_2) = \frac{1}{\cos(180^\circ - \theta_2)} = \frac{1}{-\cos\theta_2} = -\sec\theta_2 = \frac{r}{-x}$$

$$\csc(180^\circ - \theta_2) = \frac{1}{\sin(180^\circ - \theta_2)} = \frac{1}{\sin\theta_2} = \csc\theta_2 = \frac{r}{y}$$

The cosine, tangent, cotangent and secant functions are negative in the second quadrant.

| Quadrant | Sine | Cosine | Tangent | Cotangent | Secant | Cosecant |
|----------|------|--------|---------|-----------|--------|----------|
| Ι        | +    | +      | +       | +         | +      | +        |
| II       | +    | _      | _       | —         | _      | +        |
| III      | _    | _      | +       | +         | _      | _        |
| IV       | _    | +      | _       | _         | +      | —        |

TABLE 4.1 Signs of the trigonometric functions in different quadrants.

r is the hypotenuse of the right triangle formed by it and the line segments x and y. Therefore, x and y can never be greater in length than r. Accordingly, the sine and the cosine functions can never be greater than 1, that is, they can only vary from 0 to  $\pm 1$  inclusive.



| Quadrant | Sine    | Cosine  | Tangent | Cotangent | Secant           | Cosecant         |
|----------|---------|---------|---------|-----------|------------------|------------------|
| Ι        | 0 to +1 | +1 to 0 | 0 to +∞ | +∞ to 0   | +1 to <b>+</b> ∞ | +∞ to +1         |
| II       | +1 to 0 | 0 to -1 | -∞ to 0 | 0 to -∞   | —∞ to —1         | +1 to <b>+</b> ∞ |
| III      | 0 to -1 | -1 to 0 | 0 to +∞ | +∞ to 0   | —1 to —∞         | —∞ to —1         |
| IV       | −1 to 0 | 0 to +1 | —∞ to 0 | 0 to -∞   | +∞ to +1         | —1 to —∞         |

TABLE 4.2 Limits of the trigonometric functions

#### Sines and cosines of common angles

 $\sin 0^\circ = \sin 360^\circ = \sin 2\pi = 0$  $\sin 30^\circ = \sin \frac{\pi}{6} = \frac{1}{2} = 0.5$  $\sin 45^\circ = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} = 0.707$  $\sin 60^{\circ} = \sin \frac{\pi}{2} = \frac{\sqrt{3}}{2} = 0.866$  $\sin 90^\circ = \sin \frac{\pi}{2} = 1$  $\sin 120^\circ = \sin \frac{2\pi}{2} = \frac{\sqrt{3}}{2} = 0.866$  $\sin 150^\circ = \sin \frac{5\pi}{6} = \frac{1}{2} = 0.5$  $\sin 180^\circ = \sin \pi = 0$  $\sin 210^\circ = \sin \frac{7\pi}{6} = \frac{-1}{2} = -0.5$  $\sin 225^\circ = \sin \frac{5\pi}{4} = \frac{-\sqrt{2}}{2} = -0.707$  $\sin 240^\circ = \sin \frac{4\pi}{2} = \frac{-\sqrt{3}}{2} = -0.866$  $\sin 270^\circ = \sin \frac{3\pi}{2} = -1$  $\sin 300^\circ = \sin \frac{5\pi}{3} = \frac{-\sqrt{3}}{2} = -0.866$  $\sin 330^\circ = \sin \frac{11\pi}{6} = \frac{-1}{2} = -0.5$ 

$$\cos 0^{\circ} = \cos 360^{\circ} = \cos 2\pi = 1$$
  

$$\cos 30^{\circ} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} = 0.866$$
  

$$\cos 45^{\circ} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} = 0.707$$
  

$$\cos 60^{\circ} = \cos \frac{\pi}{3} = \frac{1}{2} = 0.5$$
  

$$\cos 90^{\circ} = \cos \frac{\pi}{2} = 0$$
  

$$\cos 120^{\circ} = \cos \frac{2\pi}{3} = \frac{-1}{2} = -0.5$$
  

$$\cos 150^{\circ} = \cos \frac{5\pi}{6} = \frac{-\sqrt{3}}{2} = -0.866$$
  

$$\cos 180^{\circ} = \cos \pi = -1$$
  

$$\cos 210^{\circ} = \cos \frac{5\pi}{6} = \frac{-\sqrt{3}}{2} = -0.866$$
  

$$\cos 225^{\circ} = \cos \frac{5\pi}{4} = \frac{-\sqrt{2}}{2} = -0.707$$
  

$$\cos 240^{\circ} = \cos \frac{4\pi}{3} = \frac{-1}{2} = -0.5$$
  

$$\cos 270^{\circ} = \cos \frac{3\pi}{2} = 0$$
  

$$\cos 300^{\circ} = \cos \frac{5\pi}{3} = 0.5$$
  

$$\cos 330^{\circ} = \cos \frac{11\pi}{6} = 0.866$$

# Trigonometric reduction formulas

| $\cos(-\theta) = \cos\theta$             |
|------------------------------------------|
| $\cos(90^\circ + \theta) = -\sin\theta$  |
| $\cos(180^\circ - \theta) = -\cos\theta$ |
| $\sin(-\theta) = -\sin\theta$            |
| $\sin(90^\circ + \theta) = \cos\theta$   |
| $\sin(180^\circ - \theta) = \sin\theta$  |
| $\tan(90^\circ + \theta) = -\cot\theta$  |
| $\tan(180^\circ - \theta) = -\tan\theta$ |

# Angle sum, angle difference relations

| $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$              |
|------------------------------------------------------------------------------|
| $\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$              |
| $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$              |
| $\sin(\theta - \phi) = \sin\theta\cos\phi - \cos\theta\sin\phi$              |
| $\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta\tan\phi}$ |
| $\tan(\theta - \phi) = \frac{\tan\theta - \tan\phi}{1 + \tan\theta\tan\phi}$ |

#### Example 4.1

If  $\theta = 60^\circ$  and  $\phi = 45^\circ$ , compute:

a. cos105° b. sin15° c. tan105°

### Solution:

a. From (4.29), (4.30), (4.43), and (4.44), Page 4–7, we obtain  $\cos 45^\circ = \sqrt{2}/2$ ,  $\cos 60^\circ = 1/2$ ,  $\sin 45^\circ = (\sqrt{2})/2$ , and  $\sin 60^\circ = \sqrt{3}/2$ . Then, with these relations and (4.63), Page 4–8, we obtain

$$\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$$
  

$$\cos(60^\circ + 45^\circ) = \cos60^\circ \cdot \cos45^\circ - \sin60^\circ \cdot \sin45^\circ$$
  

$$\cos(105^\circ) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \frac{1}{4} \cdot (\sqrt{2} - \sqrt{6})$$
  

$$= \frac{1}{4} \cdot (1.4142 - 2.4495) = \frac{1}{4} \cdot (-1.0353) = -0.2588$$

b. From (4.29), (4.30), (4.43), and (4.44), Page 4–7, we obtain  $\cos 45^\circ = \sqrt{2}/2$ ,  $\cos 60^\circ = 1/2$ ,  $\sin 45^\circ = (\sqrt{2})/2$ , and  $\sin 60^\circ = \sqrt{3}/2$ . Then, with these relations and (4.66), Page 4–9, we obtain

$$\sin(\theta - \phi) = \sin\theta \cos\phi - \cos\theta \sin\phi$$
  

$$\sin(60^{\circ} - 45^{\circ}) = \sin60^{\circ} \cdot \cos45^{\circ} - \cos60^{\circ} \cdot \sin45^{\circ}$$
  

$$\sin(15^{\circ}) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{1}{4} \cdot (\sqrt{6} - \sqrt{2})$$
  

$$= \frac{1}{4} \cdot (2.4495 - 1.4142) = \frac{1}{4} \cdot (1.0353) = 0.2588$$

c. From (4.23), Page 4-6,

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Then,

$$\tan 105^\circ = \frac{\sin 105^\circ}{\cos 105^\circ}$$

To find the value of sin105°, we use (4.65), Page 4-8. Thus,

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$
  

$$\sin(60^\circ + 45^\circ) = \sin60^\circ \cdot \cos45^\circ + \cos60^\circ \cdot \sin45^\circ$$
  

$$\sin(105^\circ) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{4}(\sqrt{6} + \sqrt{2})$$
  

$$= \frac{1}{4} \cdot (2.4495 + 1.4142) = \frac{1}{4} \cdot (3.8637) = 0.9659$$

We already know the value of  $\cos 105^{\circ}$  from part (a). Therefore,

$$\tan 105^\circ = \frac{\sin 105^\circ}{\cos 105^\circ} = \frac{0.9659}{-0.2588} = -3.7322$$

# Fundamental trigonometric identities

$$\cos^{2}\theta + \sin^{2}\theta = 1$$
$$\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta$$
$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^{2}\theta}$$
$$\cos^{2}\theta = \frac{1}{2}(1 + \cos 2\theta)$$
$$\sin^{2}\theta = \frac{1}{2}(1 - \cos 2\theta)$$

Function product relations

$$\cos\theta\cos\phi = \frac{1}{2}\cos(\theta + \phi) + \frac{1}{2}\cos(\theta - \phi)$$
$$\cos\theta\sin\phi = \frac{1}{2}\sin(\theta + \phi) - \frac{1}{2}\sin(\theta - \phi)$$
$$\sin\theta\cos\phi = \frac{1}{2}\sin(\theta + \phi) + \frac{1}{2}\sin(\theta - \phi)$$
$$\sin\theta\sin\phi = \frac{1}{2}\cos(\theta - \phi) - \frac{1}{2}\cos(\theta + \phi)$$

### **Triangle Formulas**

Let Figure 4.6 be any triangle.



Figure 4.6. Triangle for definition of the laws of sines, cosines, and tangents.

Then,

By the law of sines:

By the law of cosines:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac\cos\beta$$
$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$$

By the law of tangents:

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)} \qquad \frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)} \qquad \frac{c-a}{c+a} = \frac{\tan\frac{1}{2}(\gamma-\alpha)}{\tan\frac{1}{2}(\gamma+\alpha)}$$

#### Example 4.2

For the triangle of Figure 4.7below, find the length of side *a* using:

a.the law of sines

b.the law of cosines



Figure 4.7. Triangle for Example 4.2

#### Solution:

a. By the law of sines,

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$
 or  $\frac{a}{\sin 45^{\circ}} = \frac{3}{\sin 25^{\circ}}$ 

$$\sin 45^\circ = 0.707$$
 and  $\sin 25^\circ = 0.422$ 

Then 
$$\frac{a}{0.707} = \frac{3}{0.422}$$
 and  $a = \frac{3}{0.422} \times 0.707 = 5.26$  cm

b. By the law of cosines,

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

The small difference between the answers in (a) and (b) is due to the rounding of numbers.

$$a^{2} = 3^{2} + 7^{2} - 2 \times 3 \times 7 \cos 45^{\circ} = 58 - 42 \times 0.707 = 28.306$$

Therefore,

a = 5.32

The notation cos<sup>-1</sup>y or arc cos y is used to denote an angle whose cosine is y.

```
\therefore if y = cos x, then x = cos<sup>-1</sup> y
```

Similarly, if  $y = \sin x$ , then  $x = \sin^{-1} y$ 

```
If y = \tan x, then x = \tan^{-1} y
```

### Example 4.3

Find the angle  $\theta$  if  $\cos^{-1}0.5 = \theta$ .

If  $\cos^{-1} 0.5 = \theta$ , then  $0.5 = \cos \theta$ 

 $\cos 60^\circ = 0.5$ . Therefore,  $\theta = 60^\circ$ .





Figure 4.10. Parallelogram

Figure 4.9. General quadrilateral

Area of a parallelogram

### 4.10 Exercises

- **1**. If  $\theta = 45^{\circ}$  and  $\phi = 30^{\circ}$ , compute:
  - a.  $\cos 15^{\circ}$  b.  $\sin 75^{\circ}$  c.  $\tan 75^{\circ}$
- **2**. Find the angle  $\theta$  if  $\tan^{-1}1 = \theta$ .
- 3. For the triangle below, find the length of side a using:
  - a. the law of sines
  - b. the law of cosines

